\(\int (b \cos (c+d x))^n (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec (c+d x) \, dx\) [373]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 170 \[ \int (b \cos (c+d x))^n \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {C (b \cos (c+d x))^n \sin (c+d x)}{d (1+n)}-\frac {(A+A n+C n) (b \cos (c+d x))^n \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n}{2},\frac {2+n}{2},\cos ^2(c+d x)\right ) \sin (c+d x)}{d n (1+n) \sqrt {\sin ^2(c+d x)}}-\frac {B (b \cos (c+d x))^{1+n} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1+n}{2},\frac {3+n}{2},\cos ^2(c+d x)\right ) \sin (c+d x)}{b d (1+n) \sqrt {\sin ^2(c+d x)}} \]

[Out]

C*(b*cos(d*x+c))^n*sin(d*x+c)/d/(1+n)-(A*n+C*n+A)*(b*cos(d*x+c))^n*hypergeom([1/2, 1/2*n],[1+1/2*n],cos(d*x+c)
^2)*sin(d*x+c)/d/n/(1+n)/(sin(d*x+c)^2)^(1/2)-B*(b*cos(d*x+c))^(1+n)*hypergeom([1/2, 1/2+1/2*n],[3/2+1/2*n],co
s(d*x+c)^2)*sin(d*x+c)/b/d/(1+n)/(sin(d*x+c)^2)^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {16, 3102, 2827, 2722} \[ \int (b \cos (c+d x))^n \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=-\frac {(A n+A+C n) \sin (c+d x) (b \cos (c+d x))^n \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n}{2},\frac {n+2}{2},\cos ^2(c+d x)\right )}{d n (n+1) \sqrt {\sin ^2(c+d x)}}-\frac {B \sin (c+d x) (b \cos (c+d x))^{n+1} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(c+d x)\right )}{b d (n+1) \sqrt {\sin ^2(c+d x)}}+\frac {C \sin (c+d x) (b \cos (c+d x))^n}{d (n+1)} \]

[In]

Int[(b*Cos[c + d*x])^n*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(C*(b*Cos[c + d*x])^n*Sin[c + d*x])/(d*(1 + n)) - ((A + A*n + C*n)*(b*Cos[c + d*x])^n*Hypergeometric2F1[1/2, n
/2, (2 + n)/2, Cos[c + d*x]^2]*Sin[c + d*x])/(d*n*(1 + n)*Sqrt[Sin[c + d*x]^2]) - (B*(b*Cos[c + d*x])^(1 + n)*
Hypergeometric2F1[1/2, (1 + n)/2, (3 + n)/2, Cos[c + d*x]^2]*Sin[c + d*x])/(b*d*(1 + n)*Sqrt[Sin[c + d*x]^2])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = b \int (b \cos (c+d x))^{-1+n} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx \\ & = \frac {C (b \cos (c+d x))^n \sin (c+d x)}{d (1+n)}+\frac {\int (b \cos (c+d x))^{-1+n} (b (A+A n+C n)+b B (1+n) \cos (c+d x)) \, dx}{1+n} \\ & = \frac {C (b \cos (c+d x))^n \sin (c+d x)}{d (1+n)}+B \int (b \cos (c+d x))^n \, dx+\frac {(b (A+A n+C n)) \int (b \cos (c+d x))^{-1+n} \, dx}{1+n} \\ & = \frac {C (b \cos (c+d x))^n \sin (c+d x)}{d (1+n)}-\frac {(A+A n+C n) (b \cos (c+d x))^n \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n}{2},\frac {2+n}{2},\cos ^2(c+d x)\right ) \sin (c+d x)}{d n (1+n) \sqrt {\sin ^2(c+d x)}}-\frac {B (b \cos (c+d x))^{1+n} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1+n}{2},\frac {3+n}{2},\cos ^2(c+d x)\right ) \sin (c+d x)}{b d (1+n) \sqrt {\sin ^2(c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.81 \[ \int (b \cos (c+d x))^n \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {b (b \cos (c+d x))^{-1+n} \cot (c+d x) \left (-\left ((A+A n+C n) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n}{2},\frac {2+n}{2},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )+n \left (C \sin ^2(c+d x)-B \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1+n}{2},\frac {3+n}{2},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )\right )}{d n (1+n)} \]

[In]

Integrate[(b*Cos[c + d*x])^n*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(b*(b*Cos[c + d*x])^(-1 + n)*Cot[c + d*x]*(-((A + A*n + C*n)*Hypergeometric2F1[1/2, n/2, (2 + n)/2, Cos[c + d*
x]^2]*Sqrt[Sin[c + d*x]^2]) + n*(C*Sin[c + d*x]^2 - B*Cos[c + d*x]*Hypergeometric2F1[1/2, (1 + n)/2, (3 + n)/2
, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2])))/(d*n*(1 + n))

Maple [F]

\[\int \left (\cos \left (d x +c \right ) b \right )^{n} \left (A +B \cos \left (d x +c \right )+C \left (\cos ^{2}\left (d x +c \right )\right )\right ) \sec \left (d x +c \right )d x\]

[In]

int((cos(d*x+c)*b)^n*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x)

[Out]

int((cos(d*x+c)*b)^n*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x)

Fricas [F]

\[ \int (b \cos (c+d x))^n \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{n} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate((b*cos(d*x+c))^n*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^n*sec(d*x + c), x)

Sympy [F]

\[ \int (b \cos (c+d x))^n \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int \left (b \cos {\left (c + d x \right )}\right )^{n} \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \]

[In]

integrate((b*cos(d*x+c))**n*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c),x)

[Out]

Integral((b*cos(c + d*x))**n*(A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x), x)

Maxima [F]

\[ \int (b \cos (c+d x))^n \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{n} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate((b*cos(d*x+c))^n*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^n*sec(d*x + c), x)

Giac [F]

\[ \int (b \cos (c+d x))^n \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{n} \sec \left (d x + c\right ) \,d x } \]

[In]

integrate((b*cos(d*x+c))^n*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^n*sec(d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^n \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^n\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{\cos \left (c+d\,x\right )} \,d x \]

[In]

int(((b*cos(c + d*x))^n*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x),x)

[Out]

int(((b*cos(c + d*x))^n*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x), x)